Smoothness, Disagreement Coefficient, and the Label Complexity of Agnostic Active Learning
نویسنده
چکیده
We study pool-based active learning in the presence of noise, that is, the agnostic setting. It is known that the effectiveness of agnostic active learning depends on the learning problem and the hypothesis space. Although there are many cases on which active learning is very useful, it is also easy to construct examples that no active learning algorithm can have an advantage. Previous works have shown that the label complexity of active learning relies on the disagreement coefficient which often characterizes the intrinsic difficulty of the learning problem. In this paper, we study the disagreement coefficient of classification problems for which the classification boundary is smooth and the data distribution has a density that can be bounded by a smooth function. We prove upper and lower bounds for the disagreement coefficients of both finitely and infinitely smooth problems. Combining with existing results, it shows that active learning is superior to passive supervised learning for smooth problems.
منابع مشابه
Active Learning: Disagreement Coefficient
In previous lectures we saw examples in which active learning gives an exponential improvement in the number of labels required for learning. In this lecture we describe the Disagreement Coefficient —a measure of the complexity of an active learning problem proposed by Steve Hanneke in 2007. We will derive an algorithm for the realizable case and analyze it using the disagreement coefficient. I...
متن کاملBeyond Disagreement-Based Agnostic Active Learning
We study agnostic active learning, where the goal is to learn a classifier in a pre-specified hypothesis class interactively with as few label queries as possible, while making no assumptions on the true function generating the labels. The main algorithms for this problem are disagreement-based active learning, which has a high label requirement, and margin-based active learning, which only app...
متن کاملThe Relationship Between Agnostic Selective Classification Active Learning and the Disagreement Coefficient
A selective classifier ( f ,g) comprises a classification function f and a binary selection function g, which determines if the classifier abstains from prediction, or uses f to predict. The classifier is called pointwise-competitive if it classifies each point identically to the best classifier in hindsight (from the same class), whenever it does not abstain. The quality of such a classifier i...
متن کاملA compression technique for analyzing disagreement-based active learning
We introduce a new and improved characterization of the label complexity of disagreement-based active learning, in which the leading quantity is the version space compression set size. This quantity is defined as the size of the smallest subset of the training data that induces the same version space. We show various applications of the new characterization, including a tight analysis of CAL an...
متن کاملActive Learning with Connections to Confidence-rated Prediction
In the problem of active learning, we are given a set of unlabelled examples and the ability to query the labels of a subset of them, in an adaptive manner. The goal is to find a classifier with a target excess error, while querying as few labels as possible. In this report, we review several existing solutions to this problem: generalized binary search, disagreement-based active learning and m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Machine Learning Research
دوره 12 شماره
صفحات -
تاریخ انتشار 2011